List of Figures

Figure	1-1	Absolute versus relative orientation.	.8
Figure	2-1	The visual field.	.13
Figure	3-1	A fixed coordinate system.	
Figure	3-2	The Federal district of Washington, D.C.	.24
Figure	3-3	Tolman's training maze. Tolman's "sunburst" maze	
Figure	3-4	Distortions in judgement of direction of cities.	.29
Figure	3-5	Kuiper's cognitive map model.	
Figure	3-6	Guidelines for you-are-here maps.	38
Figure	3-7	A humorous representation of spatial distortion.	45
Figure	3-8	The ETAK system.	48
Figure	3-9	A typical trailblazing map with contour lines	49
Figure	3-10	A VOR display.	
Figure	3-11	A sectional chart showing flight from Sewanee to Maury County	54
Figure	3-12	Aerial navigation landmarks.	
Figure	4-1	Aerial view of Palombara Sabina, Italy.	.58
Figure	4-2	The rectangular/radial organization principle of Washington, D.C	
Figure	4-3	Decision plans within a decision diagram.	.63
Figure	4-4	The execution of a unit level decision.	64
Figure	4-5	Oriole Park at Camden Yards.	.68
Figure	4-6	The Washington MetroRail schematic plan	69
Figure	4-7	Crystal City in Arlington, Virginia in axonometric view	.70
Figure	4-8	Identification of wayfinding tasks.	
Figure	4-9	Identification of user profiles.	76
Figure	4-10	Identification of wayfinding conditions.	
Figure	4-11	Partial table used to identify design requirements.	
Figure	4-12	Identification of a solution to a wayfinding task	.79
Figure	4-13	A decision diagram with its associated environmental information.	80
Figure	4-14	A schematic layout solution.	81
Figure	5-1	A simple information processing model of spatial orientation	.84
Figure	5-2	The expected versus actual perceived stimuli effect.	.85

Wayfinding in Large-Scale Virtual Worlds

Figure	5-3	The hierarchical nature of compound wayfinding tasks	.89
Figure	5-4	Silicon Graphics Performer TM Town	.97
Figure	5-5	A simple architectural walkthrough	.97
Figure	5-6	A Naval simulation	.98
Figure	5-7	The Virtual Windtunnel	.99
Figure	5-8	A space simulation	.99
Figure	5-9	The classification categories of spatial characteristics	.100
Figure	6-1	One DTED cell covers the region between NYC and Philadelphia.	105
Figure	6-2	The buffer zone surrounding each environment.	.106
Figure	6-3	The radial grid as seen from above. The outer posts	.107
Figure	6-4	The map used with the map treatment.	.108
Figure	6-5	The map/grid treatment.	.109
Figure	6-6	The Fakespace Inc. BOOM3C TM and hand controller	
Figure	7-1	Total Time	
Figure	7-2	Average Naive Search Time	.118
Figure	7-3	Primed Search Time	.119
Figure	7-4	Distance Travelled	.121
Figure	7-5	The percent of environment viewed method of measurement	.122
Figure	7-6	Percent of Environment Viewed	.123
Figure	7-7	The Ratio of Percent Viewed to Total Time	.124
Figure	7-8	Average Velocity	.125
Figure	7-9	An example of the map distance and direction metric technique	
Figure	7-10	Map Distance Error	
Figure	7-11	Map Direction Error	.129
Figure	7-12	Map Land Error	.130
Figure	7-13	Total Map Error	.131
Figure	7-14	Cognitive Factors	.132
Figure	8-1	High-level schematic diagram of task execution.	.137
Figure	8-2	Examples of acquire-orientation.	.140
Figure	8-3	Examples of the spatial-memory representations observed	.149
Figure	8-4	Example of the local-search-method	
Figure	8-5	Example of the lawnmower-method.	.151
Figure	8-6	Example of the multi-pass-method.	.152
Figure	8-7	Example of the extent-method	
Figure	8-8	Examples of naive-searches.	.154
Figure	8-9	Pictorial description of three conceptual spatial representations	.163
Figure	8-10	The three digit code used with the pie-slice-method	.165
Figure	8-11	The path chart and drawn map from the area-search-method	.166
Figure	8-12	The lawnmower and heuristic methods in the map treatment	
Figure		The area-search-method in the map/grid treatment	
Figure	9-1	A typical control treatment path and its associated map drawing	
Figure	9-2	A grid treatment showing the patterns of search	.182

List of Figures

Figure	9-3	A map treatment illustrating the lawnmower method	.183
Figure	9-4	Spatial Orientation to Visualization	.185
Figure	9-5	Visualization to Primed Search Time:Control Treatment	.186
Figure	9-6	Spatial Scanning to Average Velocity:Map/Grid	.186
Figure	9-7	Spatial Scanning to Map Land Error:Control	.187
Figure	9-8	Avg Naive Search: Map to Avg Naive Search: Map/Grid	.188
Figure	9-9	Avg Naive Search: Map to Map Distance Error: Control	.189
Figure	9-10	Avg Naive Search: Map/Grid to Map Distance Error: Control	.189
Figure	9-11	Distance Travelled:Control to Map Direction Error:Control	.190
Figure	9-12	Percent Environment Viewed:Control to Map Land Error:Control	.190
Figure	9-13	Avg Velocity:Control to Avg Velocity:Grid	.191
Figure	9-14	Map Distance Error:Grid to Map Direction Error:Grid	.192
Figure	9-15	Map Distance Error: Map/Grid to Map Direction Error: Map/Grid	.192

Wayfinding in Large-Scale Virtual Worlds